Items Authored by Rukimbira, Philippe

نویسندگان

  • Belgin Korkmaz
  • Luis A. Cordero
  • Juan Carlos Marrero
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On K-contact Manifolds with Minimal Number of Closed Characteristics

We prove that closed simply connected K-contact manifolds with minimal number of closed characteristics are homeomorphic to odd-dimensional spheres.

متن کامل

Fibrations and contact structures

We prove that a closed 3-dimensional manifold is a torus bundle over the circle if and only if it carries a closed nonsingular 1-form which is linearly deformable into contact forms.

متن کامل

Foliations and contact structures

We introduce a notion of linear deformation of codimension one foliations into contact structures and describe some foliations which deform instantly into contact structures and some which do not. Restricting ourselves to closed smooth manifolds, we obtain a necessary and su‰cient condition for a foliation defined by a closed nonsingular 1-form to be linearly deformable into contact structures....

متن کامل

Topology and closed characteristics of K-contact manifolds

We prove that the characteristic flow of a K-contact form has at least n+1 closed leaves on a closed 2n+1-dimensional manifold. We also show that the first Betti number of a closed sasakian manifold with finitely many closed characteristics is zero.

متن کامل

Rank and k-nullity of contact manifolds

We prove that the dimension of the 1-nullity distributionN(1) on a closed Sasakianmanifold M of rank l is at least equal to 2l−1 provided thatM has an isolated closed characteristic. The result is then used to provide some examples ofK-contact manifolds which are not Sasakian. On a closed, 2n+ 1-dimensional Sasakian manifold of positive bisectional curvature, we show that either the dimension o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005